Higher Derivatives

Introduction

The derivative, $\frac{d y}{d x}$, is more expressly called the first derivative of y. By differentiating the first derivative, we obtain the second derivative; by differentiating the second derivative we obtain the third derivative and so on. These second and subsequent derivatives are known as higher derivatives. Second derivatives in particular occur frequently in engineering contexts.

Before starting this Section you should

On completion you should be able to ...

1. The derivative of a derivative

You have already learnt how to calculate the derivative of a function using a table of derivatives and applying some basic rules. By differentiating the function, $y(x)$, we obtain the derivative, $\frac{d y}{d x}$. By repeating the process we can obtain higher derivatives.

Example 7

Calculate the first, second and third derivatives of $y=x^{4}+6 x^{2}$.

Solution

The first derivative is $\frac{d y}{d x}$:
first derivative $=4 x^{3}+12 x$
To obtain the second derivative we differentiate the first derivative.
second derivative $=12 x^{2}+12$
The third derivative is found by differentiating the second derivative.
third derivative $=24 x+0=24 x$

2. Notation for derivatives

Just as there is a notation for the first derivative so there is a similar notation for higher derivatives. Consider the function, $y(x)$. We know that the first derivative is $\frac{d y}{d x}$ or $\frac{d}{d x}(y)$ which is the instruction to differentiate the function $y(x)$. The second derivative is calculated by differentiating the first derivative, that is

$$
\text { second derivative }=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

So, using a fairly obvious adaptation of our derivative notation, the second derivative is denoted by $\frac{d^{2} y}{d x^{2}}$ and is read as 'dee two y by dee x squared'. This is often written more concisely as $y^{\prime \prime}$.
In similar manner, the third derivative is denoted by $\frac{d^{3} y}{d x^{3}}$ or $y^{\prime \prime \prime}$ and so on. So, referring to Example 6 we could have written

$$
\begin{aligned}
\text { first derivative } & =\frac{d y}{d x}=4 x^{3}+12 x \\
\text { second derivative } & =\frac{d^{2} y}{d x^{2}}=12 x^{2}+12 \\
\text { third derivative } & =\frac{d^{3} y}{d x^{3}}=24 x
\end{aligned}
$$

Key Point 7

If $y=y(x)$ then its first, second and third derivatives are denoted by:

$$
\begin{array}{ccc}
& \frac{d y}{d x} & \frac{d^{2} y}{d x^{2}} \\
\text { or } & y^{\prime} & y^{\prime \prime} \\
\frac{d^{3} y}{d x^{3}} \\
y^{\prime \prime \prime}
\end{array}
$$

In most examples we use x to denote the independent variable and y the dependent variable. However, in many applications, time t is the independent variable. In this case a special notation is used for derivatives. Derivatives with respect to t are often indicated using a dot notation, so $\frac{d y}{d t}$ can be written as \dot{y}, pronounced ' y dot'. Similarly, a second derivative with respect to t can be written as \ddot{y}, pronounced ' y double dot'.

Key Point 8

If $y=y(t)$ then

$$
\dot{y} \text { stands for } \frac{d y}{d t}, \quad \ddot{y} \text { stands for } \frac{d^{2} y}{d t^{2}} \text { etc }
$$

First find $\frac{d y}{d x}$:
Your solution

Answer

$\frac{d y}{d t}=2 e^{2 t}-\sin t$

Now obtain the second derivative:

Your solution

$$
\frac{d^{2} y}{d t^{2}}=
$$

Answer

$4 e^{2 t}-\cos t$
Finally, obtain the third derivative:

Your solution

$$
\frac{d^{3} y}{d t^{3}}=\frac{d}{d t}\left(\frac{d^{2} y}{d t^{2}}\right)=
$$

Answer

$8 e^{2 t}+\sin t$
Note that in the last Task we could have used the dot notation and written $\dot{y}=2 e^{2 t}-\sin t$, $\ddot{y}=4 e^{2 t}-\cos t$ and $\dddot{y}=8 \mathrm{e}^{2 t}+\sin t$

We may need to evaluate higher derivatives at specific points. We use an obvious notation.
The second derivative of $y(x)$, evaluated at say, $x=2$, is written as $\frac{d^{2} y}{d x^{2}}(2)$, or more simply as $y^{\prime \prime}(2)$.
The third derivative evaluated at $x=-1$ is written as $\frac{d^{3} y}{d x^{3}}(-1)$ or $y^{\prime \prime \prime}(-1)$.

Given $\quad y(x)=2 \sin x+3 x^{2}$ find (a) $y^{\prime}(1)$
(b) $y^{\prime \prime}(-1)$
(c) $y^{\prime \prime \prime}(0)$

First find $y^{\prime}(x), y^{\prime \prime}(x)$ and $y^{\prime \prime \prime}(x)$:

Your solution

$y^{\prime}(x)=$
$y^{\prime \prime}(x)=$
$y^{\prime \prime \prime}=$

Answer
$y^{\prime}(x)=2 \cos x+6 x$
$y^{\prime \prime}(x)=-2 \sin x+6$
$y^{\prime \prime \prime}(x)=-2 \cos x$

Now substitute $x=1$ in $y^{\prime}(x)$ to obtain $y^{\prime}(1)$:

Your solution

(a) $y^{\prime}(1)=$

Answer

$y^{\prime}(1)=2 \cos 1+6(1)=7.0806$. Remember, in $\cos 1$ the ' 1 ' is 1 radian.

Now find $y^{\prime \prime}(-1)$:

Your solution

(b) $y^{\prime \prime}(-1)=$

Answer

$y^{\prime \prime}(-1)=-2 \sin (-1)+6=7.6829$
Finally, find $y^{\prime \prime \prime}(0)$:

Your solution

(c) $y^{\prime \prime \prime}(0)=$

Answer

$$
y^{\prime \prime \prime}(0)=-2 \cos 0=-2 .
$$

Exercises

1. Find $\frac{d^{2} y}{d x^{2}}$ where $y(x)$ is defined by:
(a) $3 x^{2}-e^{2 x}$
(b) $\sin 3 x+\cos x$
(c) \sqrt{x}
(d) $e^{x}+e^{-x}$
(e) $1+x+x^{2}+\ln x$
2. Find $\frac{d^{3} y}{d x^{3}}$ where y is given in Exercise 1.
3. Calculate $\ddot{y}(1)$ where $y(t)$ is given by:
(a) $t\left(t^{2}+1\right)$
(b) $\sin (-2 t)$
(c) $2 e^{t}+e^{2 t}$
(d) $\frac{1}{t}$
(e) $\cos \frac{t}{2}$
4. Calculate $\dddot{y}(-1)$ for the functions given in Exercise 3 .

Answers

1. (a) $6-4 e^{2 x}$
(b) $-9 \sin 3 x-\cos x$
(c) $-\frac{1}{4} x^{-3 / 2}$
(d) $e^{x}+e^{-x}$
(e) $2-\frac{1}{x^{2}}$
2. (a) $-8 e^{2 x}$
(b) $-27 \cos 3 x+\sin x$
(c) $\frac{3}{8} x^{-5 / 2}$
(d) $e^{x}-e^{-x}$
(e) $\frac{2}{x^{3}}$
3. (a) 6
(b) 3.6372
(c) 34.9927
(d) 2
(e) -0.2194
4. (a) 6
(b) -3.3292
(c) 1.8184
(d) -6 (e) -0.0599
