Engineering Maths First Aid Kit

Introduction to differentiation

Introduction

This leaflet provides a rough and ready introduction to **differentiation**. This is a technique used to calculate the gradient, or slope, of a graph at different points.

1. The gradient function

Given a function, for example, $y = x^2$, it is possible to derive a formula for the gradient of its graph. We can think of this formula as the **gradient function**, precisely because it tells us the gradient of the graph. For example,

when
$$y = x^2$$
 the gradient function is $2x$

So, the gradient of the graph of $y = x^2$ at any point is twice the x value there. To understand how this formula is actually found you would need to refer to a textbook on calculus. The important point is that using this formula we can calculate the gradient of $y = x^2$ at different points on the graph. For example,

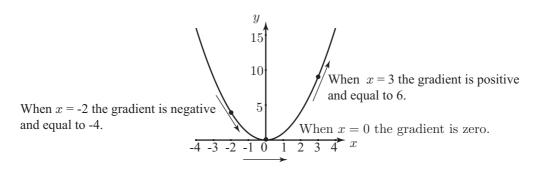
when
$$x = 3$$
, the gradient is $2 \times 3 = 6$.

when
$$x = -2$$
, the gradient is $2 \times (-2) = -4$.

How do we interpret these numbers? A gradient of 6 means that values of y are increasing at the rate of 6 units for every 1 unit increase in x. A gradient of -4 means that values of y are decreasing at a rate of 4 units for every 1 unit increase in x.

Note that when x = 0, the gradient is $2 \times 0 = 0$.

Below is a graph of the function $y = x^2$. Study the graph and you will note that when x = 3 the graph has a positive gradient. When x = -2 the graph has a negative gradient. When x = 0 the gradient of the graph is zero. Note how these properties of the graph can be predicted from knowledge of the gradient function, 2x.



Example

When $y = x^3$, its gradient function is $3x^2$. Calculate the gradient of the graph of $y = x^3$ when a) x = 2, b) x = -1, c) x = 0.

Solution

- a) when x = 2 the gradient function is $3(2)^2 = 12$.
- b) when x = -1 the gradient function is $3(-1)^2 = 3$.
- c) when x = 0 the gradient function is $3(0)^2 = 0$.

2. Notation for the gradient function

You will need to use a notation for the gradient function which is in widespread use.

If y is a function of x, that is y = f(x), we write its gradient function as $\frac{dy}{dx}$

 $\frac{\mathrm{d}y}{\mathrm{d}x}$, pronounced 'dee y by dee x', is not a fraction even though it might look like one! This notation can be confusing. Think of $\frac{dy}{dx}$ as the 'symbol' for the gradient function of y = f(x). The process of finding $\frac{dy}{dx}$ is called **differentiation with respect to** x.

Example

For any value of n, the gradient function of x^n is nx^{n-1} . We write:

if
$$y = x^n$$
, then $\frac{\mathrm{d}y}{\mathrm{d}x} = nx^{n-1}$

You have seen specific cases of this result earlier on. For example, if $y = x^3$, $\frac{dy}{dx} = 3x^2$.

3. More notation and terminology

When y = f(x) alternative ways of writing the gradient function, $\frac{dy}{dx}$, are y', pronounced 'y dash', or $\frac{\mathrm{d}f}{\mathrm{d}x}$, or f', pronounced 'f dash'. In practice you do not need to remember the formulas for the gradient functions of all the common functions. Engineers usually refer to a table known as a Table of Derivatives. A derivative is another name for a gradient function. Such a table is available on leaflet 8.2. The derivative is also known as the **rate of change** of a function.

Exercises

- 1. Given that when $y = x^2$, $\frac{dy}{dx} = 2x$, find the gradient of $y = x^2$ when x = 7.
- 2. Given that when $y=x^n$, $\frac{dy}{dx}=nx^{n-1}$, find the gradient of $y=x^4$ when a) x=2, b) x=-1.
- 3. Find the rate of change of $y = x^3$ when a) x = -2, b) x = 6.
- 4. Given that when $y = 7x^2 + 5x$, $\frac{dy}{dx} = 14x + 5$, find the gradient of $y = 7x^2 + 5x$ when x = 2.

Answers

- 2. a) 32, b) -4. 3. a) 12, b) 108. 4. 33.