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Sometimes the integral of an algebraic fraction can be found by first expressing the algebraic
fraction as the sum of its partial fractions. In this unit we will illustrate this idea. We will see
that it is also necessary to draw upon a wide variety of other techniques such as completing the
square, integration by substitution, using standard forms, and so on.

In order to master the techniques explained here it is vital that you undertake plenty of practice
exercises so that they become second nature.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

• integrate algebraic fractions by first expressing them in partial fractions

• integrate algebraic fractions by using a variety of other techniques

Contents

1. Introduction 2

2. Some preliminary results 2

3. Algebraic fractions with two linear factors 3

4. Algebraic fractions with a repeated linear factor 6

5. Dealing with improper fractions 7

www.mathcentre.ac.uk 1 c© mathcentre 2009



1. Introduction
In this section we are going to look at how we can integrate some algebraic fractions. We will be
using partial fractions to rewrite the integrand as the sum of simpler fractions which can then be
integrated separately. We will also need to call upon a wide variety of other techniques including
completing the square, integration by substitution, integration using standard results and so on.

Examples of the sorts of algebraic fractions we will be integrating are

x

(2 − x)(3 + x)
,

1

x2 + x + 1
,

1

(x − 1)2(x + 1)
and

x3

x2 − 4

Whilst superficially they may look similar, there are important differences. For example, the
denominator of the first contains two linear factors. The second has an irreducible quadratic
factor (i.e. it will not factorise), and we consider how to deal with this case in the second video
on Integrating by Partial Fractions. The third example contains a factor which is repeated. The
fourth is an example of an improper fraction because the degree of the numerator is greater than
the degree of the denominator. All of these factors are important in selecting the appropriate
way to proceed.

It is also important to consider the degree of the numerator and of the denominator. For
instance, if we consider the third example, then the degree of its denominator is 3, because when
we multiply out (x−1)2(x+1) the highest power of x is x3. Also, the degree of the numerator is
zero, because we can think of 1 as 1x0. So the degree of the numerator is less than the degree
of the denominator, and that is the case for the first three of the examples. We call fractions
like these proper fractions. On the other hand, in the final example, the degree of the numerator
is 3 whereas the degree of the denominator is 2. This is called an improper fraction.

Key Point

The degree of a polynomial expression in x is the highest power of x appearing in the expression.
An algebraic fraction where the degree of the numerator is less than the degree of the denom-
inator is called a proper fraction. If the degree of the numerator is greater than, or equal to,
the degree of the denominator then the fraction is an improper fraction.

2. Some preliminary results

To understand the examples which follow you will need to use various techniques which you
should have met before. We summarise them briefly here, but you should refer to other relevant
material if you need to revise the details.

Partial fractions
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A linear factor, ax + b in the denominator gives rise to a partial fraction of the form
A

ax + b
.

Repeated linear factors, (ax + b)2 give rise to partial fractions of the form
A

ax + b
+

B

(ax + b)2
.

A quadratic factor ax2 + bx + c gives rise to a partial fraction of the form
Ax + B

ax2 + bx + c
.

Integration - standard results

∫

f ′(x)

f(x)
dx = ln |f(x)| + c e.g.

∫

1

x + 1
dx = ln |x + 1| + c ,

∫

1

a2 + x2
dx =

1

a
tan−1

x

a
+ c .

Integration - substitution

To find

∫

1

(x − 1)2
dx, substitute u = x − 1, du =

(

du

dx

)

dx to give

∫

1

(x − 1)2
dx =

∫

1

u2
du

=

∫

u−2du

= −u−1 + c

= −
1

x − 1
+ c .

3. Algebraic fractions with two linear factors
In this section we will consider how to integrate an algebraic fraction which has the form of a
proper fraction with two linear factors in the denominator.

Example

Suppose we want to find
∫

x

(2 − x)(x + 3)
dx .

Note that the integrand is a proper fraction (because the degree of the numerator is less than
the degree of the denominator), and also that the denominator has two, distinct, linear factors.
Therefore the appropriate form for its partial fractions is

x

(2 − x)(x + 3)
=

A

(2 − x)
+

B

(x + 3)

where A and B are constants which we shall determine shortly. We add the two terms on the
right-hand side together again using a common denominator:

x

(2 − x)(x + 3)
=

A

(2 − x)
+

B

(x + 3)

=
A(x + 3) + B(2 − x)

(2 − x)(x + 3)
.
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Because the fraction on the left is equal to that on the right for all values of x, and because their
denominators are equal, then their numerators too must be equal. So, from just the numerators,

x = A(x + 3) + B(2 − x) . (1)

We now proceed to find the values of the constants A and B. We can do this in one of two
ways, or by mixing the two ways. The first way is to substitute particular values for x. The
second way is to separately equate coefficients of constant terms, linear terms, quadratic terms
etc. Both of these ways will be illustrated now.

Substitution of particular values for x

Because expression (1) is true for all values of x we can substitute any value we choose for x.
In particular, if we let x = 2 the second term on the right becomes zero, and everything looks
simpler:

2 = A(2 + 3) + 0

from which 5A = 2 and so

A =
2

5
.

Similarly, substituting x = −3 in expression (1) makes the first term zero:

−3 = 5B

from which

B = −
3

5
.

Thus the partial fractions are

x

(2 − x)(x + 3)
=

2

5(2 − x)
−

3

5(x + 3)
.

Both of the terms on the right can be integrated:
∫

(

2

5(2 − x)
−

3

5(x + 3)

)

dx = −
2

5

∫

−1

2 − x
dx −

3

5

∫

1

x + 3
dx

= −
2

5
ln |2 − x| −

3

5
ln |x + 3| + c .

Note that in the first of the two integrals, we have set the numerator to be −1 and compensated
for this by writing a minus sign outside the integral. We have done this because the derivative
of 2 − x is −1, so that the integral is in a standard form. So by using partial fractions we have
broken down the original integral into two separate integrals which we can then evaluate.

Equating coefficients

A second technique for finding A and B is to equate the coefficients of equivalent terms on each
side. First of all we expand the brackets in Equation (1) and collect together like terms:

x = Ax + 3A + 2B − Bx

= (A − B)x + 3A + 2B .

Equating the coefficients of x on each side:

1 = A − B . (2)
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Equating constant terms on each side of this expression gives

0 = 3A + 2B . (3)

These are two simultaneous equations we can solve to find A and B. Multiplying Equation (2)
by 2 gives

2 = 2A − 2B . (4)

Now, adding (3) and (4) eliminates the B’s to give

2 = 5A

from which A =
2

5
. Also, from (2), B = A − 1 =

2

5
− 1 = −

3

5
just as we obtained using the

method of substituting specific values for x. Often you will find that a combination of both
techniques is efficient.

Example

Suppose we want to evaluate

∫

2

1

3

x(x + 1)
dx.

Note again that the integrand is a proper fraction and also that the denominator has two, distinct,
linear factors. Therefore the appropriate form for its partial fractions is

3

x(x + 1)
=

A

x
+

B

(x + 1)

where A and B are constants we need to find. We add the two terms on the right-hand side
together again using a common denominator.

3

x(x + 1)
=

A

x
+

B

(x + 1)

=
A(x + 1) + Bx

x(x + 1)
.

Because the fraction on the left is equal to that on the right for all values of x, and because their
denominators are equal, then their numerators too must be equal. So, from just the numerators,

3 = A(x + 1) + Bx .

If we substitute x = 0 we can immediately find A:

3 = A(0 + 1) + B(0)

so that A = 3.
If we substitute x = −1 we find B:

3 = A(−1 + 1) + B(−1)

so that B = −3. Then
∫

2

1

3

x(x + 1)
dx =

∫

2

1

(

3

x
−

3

x + 1

)

dx

= [3 ln |x| − 3 ln |x + 1|]2
1

= (3 ln 2 − 3 ln 3) − (3 ln 1 − 3 ln 2)

= 6 ln 2 − 3 ln 3

= ln
26

33

= ln
64

27
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Exercises 1

1. Find each of the following integrals by expressing the integrand in partial fractions.

(a)

∫

1

(x + 2)(x + 1)
dx (b)

∫

x

(2x + 3)(x − 4)
dx (c)

∫

3x + 2

(x − 1)(x + 7)
dx

4. Algebraic fractions with a repeated linear factor

When the denominator contains a repeated linear factor care must be taken to use the correct
form of partial fractions as illustrated in the following example.

Example

Find

∫

1

(x − 1)2(x + 1)
dx.

In this Example there is a repeated factor in the denominator. This is because the factor x − 1
appears twice, as in (x − 1)2. We write

1

(x − 1)2(x + 1)
=

A

x − 1
+

B

(x − 1)2
+

C

x + 1

=
A(x − 1)(x + 1) + B(x + 1) + C(x − 1)2

(x − 1)2(x + 1)
.

As before, the fractions on the left and the right are equal for all values of x. Their denominators
are equal and so we can equate the numerators:

1 = A(x − 1)(x + 1) + B(x + 1) + C(x − 1)2 . (1)

Substituting x = 1 in Equation (1) gives 1 = 2B, from which B = 1

2
.

Substituting x = −1 gives 1 = 4C from which C = 1

4
.

Knowing B and C, substitution of any other value for x will give the value of A. For example, if
we let x = 0 we find

1 = −A + B + C

and so

1 = −A +
1

2
+

1

4

from which A = −1

4
. Alternatively, we could have expanded the right-hand side of Equation (1),

collected like terms together and equated coefficients. This would have yielded the same values
for A, B and C.

The integral becomes
∫

1

(x − 1)2(x + 1)
dx =

∫
(

−
1

4(x − 1)
+

1

2(x − 1)2
+

1

4(x + 1)

)

dx

= −
1

4
ln |x − 1| −

1

2(x − 1)
+

1

4
ln |x + 1| + c .

Using the laws of logarithms this can be written in the following alternative form if required:

1

4
ln

∣

∣

∣

∣

x + 1

x − 1

∣

∣

∣

∣

−
1

2(x − 1)
+ c .
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Exercises 2

1. Integrate each of the following by expressing the integrand in partial fractions.

(a)

∫

1

(x + 3)2(x − 1)
dx (b)

∫

2x + 1

(x + 2)2(x + 1)
dx (c)

∫

x + 1

x(x − 7)2
dx.

5. Dealing with improper fractions

When the degree of the numerator is greater than or equal to the degree of the denominator
the fraction is said to be improper. In such cases it is first necessary to carry out long division
as illustrated in the next Example.

Example

Find

∫

x3

x2 − 4
dx.

The degree of the numerator is greater than the degree of the numerator. This fraction is
therefore improper. We can divide the denominator into the numerator using long division of
fractions:

x2 − 4

x
)

x3

x3 − 4x
4x

so that
x3

x2 − 4
= x +

4x

x2 − 4
.

Note that the denominator of the second term on the right hand side is the difference of two
squares and can be factorised as x2 − 4 = (x − 2)(x + 2). So,

4x

x2 − 4
=

4x

(x − 2)(x + 2)
=

A

x − 2
+

B

x + 2

=
A(x + 2) + B(x − 2)

(x − 2)(x + 2)
.

As before, the fractions on the left and on the right are equal for all values of x. Their denom-
inators are the same, and so too must be their numerators. So we equate the numerators to
give

4x = A(x + 2) + B(x − 2) .

Choosing x = 2 we find 8 = 4A so that A = 2. Choosing x = −2 gives −8 = −4B so that
B = 2. So with these values of A and B the integral becomes

∫

x3

x2 − 4
dx =

∫
(

x +
2

x − 2
+

2

x + 2

)

dx

=
x2

2
+ 2 ln |x − 2| + 2 ln |x + 2| + c .

Exercises 3
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1. Use long division and partial fractions to find the following integrals.

(a)

∫

x3 + 1

1 − x2
dx (b)

∫

x2 + 3x + 3

x + 1
dx

(c)

∫

7x − 6

x − 1
dx (d)

∫

7x2 + 16x − 19

x2 + 2x − 3
dx

Answers

Exercises 1

1. (a) ln |x + 1| − ln |x + 2| + c (b) 3

22
ln |2x + 3| + 4

11
ln |x − 4| + c (c) 5

8
ln |x − 1| +

19

8
ln |x + 7| + c.

Exercises 2

1. (a) the partial fractions are: −
1

4

1

(x + 3)2
−

1

16

1

x + 3
+

1

16

1

x − 1
;

the integral is
1

4

1

x + 3
−

1

16
ln|x + |) +

1

16
ln|x − 1| + C

(b) the partial fractions are
3

(x + 2)2
+

1

x + 2
−

1

x + 1
;

the integral is −
3

x + 2
+ ln |x + 2| − ln |x + 1| + C.

(c) the partial fractions are
1

49x
+

8

7(x − 7)2
−

1

49(x − 7)
;

the integral is
1

49
ln |x| −

8

7(x − 7)
−

1

49
ln |x − 7| + C.

Exercises 3

1. (a) the partial fractions are −x −
1

x − 1
;

the integral is −
x2

2
− ln |x − 1| + C.

(b) the partial fractions are x + 2 +
1

x + 1
;

the integral is
x2

2
+ 2x + ln |x + 1| + C.

(c) the partial fractions are 7 +
1

x − 1
;

the integral is 7x + ln |x − 1| + C.

(d) the partial fractions are 7 +
1

x + 3
+

1

x − 1
;

the integral is 7x + ln |x + 3| + ln |x − 1| + C.
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Integrating
algebraic fractions 2

mc-TY-algfrac2-2009-1

Sometimes the integral of an algebraic fraction can be found by first expressing the algebraic
fraction as the sum of its partial fractions. In this unit we look at the case where the denominator
of the fraction involves an irreducible quadratic expression.

In order to master the techniques explained here it is vital that you undertake plenty of practice
exercises so that they become second nature.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

• integrate an algebraic fraction where the denominator involves an irreducible quadratic
expression.

Contents

1. Introduction 2

2. Algebraic fractions with an irreducible quadratic factor 2
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1. Introduction
In this unit we are going to look at how we can integrate some more algebraic fractions. We shall
concentrate on the case where the denominator of the fraction involves an irreducible quadratic
factor. The case where all the factors of the denominator are linear has been covered in the first
unit on integrating algebraic fractions.

2. Algebraic fractions with an irreducible quadratic factor
When the denominator of a fraction contains a quadratic, ax2 + bx + c, which will not factorise
into two linear factors (said to be an irreducible quadratic factor) the appropriate form of partial
fractions is

Ax + B

ax2 + bx + c
.

Suppose the value of A turns out to be zero. Then we have an integrand of the form

constant

ax2 + bx + c
.

A term like this can be integrated by completing the square as in the following example.

Example

Suppose we wish to find

∫

1

x2 + x + 1
dx.

We start by completing the square in the denominator to give

∫

1

x2 + x + 1
dx =

∫

1
(

x + 1

2

)2

+ 3

4

dx .

If we now substitute u = x + 1

2
we obtain

∫

1

u2 + 3

4

du. There is a standard result which we

quote that
∫

1

a2 + x2
dx =

1

a
tan−1

x

a
+ c .

This enables us to complete this example, with a =
√

3/2, and obtain
1√
3/2

tan−1
u√
3/2
. In

terms of the original variable, x, we have
∫

1

x2 + x + 1
dx =

2√
3

tan−1
2x + 1√

3
+ c .

On the other hand, if A is non-zero it may turn out that the numerator is the derivative of the
denominator, or can be easily made so. In such cases, the standard result

∫

f ′(x)

f(x)
dx = ln |f(x)| + c

can be used.
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Consider the following example.

Example

Suppose we wish to find

∫

2x + 1

x2 + x + 1
dx.

Here the derivative of x2 + x + 1 is 2x + 1 and so immediately we can write down the answer:

∫

2x + 1

x2 + x + 1
dx = ln |x2 + x + 1| + c .

Finally, we may have values of A and B such that the numerator is not the derivative of the
denominator. In such a case we have to adjust the numerator to make it so, and then compensate
by including another term as illustrated in the following example.

Example

Suppose we wish to find

∫

x

x2 + x + 1
dx.

Again we shall use the result that

∫

f ′(x)

f(x)
dx = ln |f(x)| + c but unfortunately the numerator

is not quite equal to the derivative of the denominator. We would like the denominator to be
2x + 1. We can adjust the integrand by writing it as follows:

x

x2 + x + 1
=

1

2

(

2x

x2 + x + 1

)

.

This has the effect of introducing the required 2x in the numerator. To obtain the require +1,
we write

1

2

(

2x

x2 + x + 1

)

=
1

2

(

2x + 1 − 1

x2 + x + 1

)

=
1

2

(

2x + 1

x2 + x + 1
− 1

x2 + x + 1

)

.

Each of these terms can be integrated using the results of the two previous examples and we
obtain

∫

x

x2 + x + 1
dx =

1

2
ln |x2 + x + 1| − 1√

3
tan−1

2x + 1√
3

+ c .

So you see that you need a combination of a variety of techniques together with some ingenuity
and skill. Practice is essential so that you experience a wide variety of such problems.

Example

Find

∫

1

x(x2 + 1)
dx.

Here we express the integrand in partial fractions, noting in particular the appropriate form to
use when dealing with an irreducible quadratic factor.

1

x(x2 + 1)
=

A

x
+

Bx + C

x2 + 1

=
A(x2 + 1) + (Bx + C)x

x(x2 + 1)
.
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The fractions on the left and right are equal for all values of x. The denominators are equal, and
so too must be the numerators. So, from just the numerators:

1 = A(x2 + 1) + (Bx + C)x .

We can substitute some sensible values for x in order to find the numbers A, B and C, or we
can equate coefficients. We can also use a combination of these two methods. If we substitute
x = 0 we obtain

1 = A .

Next, we can compare the coefficients of x2 on both sides:

0 = A + B .

But we already know that A = 1, and so B must equal −1. And finally, we compare the
coefficients of x on both sides:

0 = C .

Returning to the integral, and using these values of A, B and C we find
∫

1

x(x2 + 1)
dx =

∫

1

x
dx −

∫

x

x2 + 1
dx .

The first integral on the right is a standard form. The second is adjusted as follows to make the
numerator the derivative of the denominator:

∫

x

x2 + 1
dx =

1

2

∫

2x

x2 + 1
dx .

Then
∫

1

x(x2 + 1)
dx =

∫

1

x
dx − 1

2

∫

2x

x2 + 1
dx

= ln |x| − 1

2
ln |x2 + 1| + c

Using the laws of logarithms the first two terms can be combined to express the answer as a
single logarithm if required:

ln |x| − 1

2
ln |x2 + 1| = ln |x| − ln |x2 + 1|1/2

= ln |x| − ln |
√

x2 + 1|

= ln

∣

∣

∣

∣

x√
x2 + 1

∣

∣

∣

∣

.

Exercises

1. Find the following integrals by expressing the integrand in partial fractions.

(a)

∫

3x2 − 6x + 4

(x2 + 4)(x − 3)
dx (b)

∫

6x2 + 10x + 5

(x + 1)(2x2 + 3x + 2)
dx

2. By completing the square find

∫

1

2x2 + x + 3
dx.

3. Find

∫

x + 1

x2 + x + 3
dx.

4. Express in partial fractions and then integrate
2x2 + 2x + 19

(x − 2)(2x2 + 6x + 11)
.
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Answers

1. (a) the partial fractions are
1

x − 3
+

2x

x2 + 4
; the integral is ln |x − 3| + ln |x2 + 4| + C.

(b) the partial fractions are
1

x + 1
+

3 + 4x

2x2 + 3x + 2
; the integral is ln |x+1|+ln |2x2 +3x+2|+C.

2.
2√
23

tan−1

(

4x + 1√
23

)

+ C.

3.
1

2
ln(x2 + x + 3) +

1√
11

tan−1

(

2x + 1√
11

)

.

4. ln |x − 2| − 4√
13

tan−1
2x + 3√

13
+ C.
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